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Introduction
Epicyclic gear stages provide high load 
capacity and compactness to gear drives. 
There is a wide variety of different com-
binations of planetary gear arrangements 
(Refs. 1–2). For simple, epicyclic plan-
etary stages when the ring gear is station-
ary, the practical gear ratio range var-
ies from 3:1 to 9:1. For similar epicyclic 
planetary stages with compound planet 
gears, the practical gear ratio range varies 
from 8:1 to 30:1.

This paper presents analysis and design 
of epicyclic gear arrangements that pro-
vide extremely high gear ratios. Using 
differential-planetary gear arrangements 
it is possible to achieve gear ratios of sev-
eral-hundred-to-one in one-stage-drive 
with common planet gears, and several-
thousand-to-one in one-stage drive with 
compound planet gears. A special two-
stage planetary arrangement may utilize 
a gear ratio of over one-hundred-thou-
sand-to-one.

This paper provides an analysis of such 
uncommon gear drive arrangements and 
defines their major parameters, limi-
tations, and gear ratio maximization 
approaches. It also demonstrates numeri-
cal examples, existing designs, and poten-
tial applications.

One-Stage Arrangements
There are one-stage differential-planetary 
arrangements that provide much higher 
gear ratios. In these arrangements the 
output shaft is connected to the second 
rotating ring gear rather than the car-
rier, as with the epicyclic planetary stages. 
In this case a carrier does not transmit 
torque and is called a “cage” because it is 
simply used to support planet gears.

Figures 1a and 1b present differen-
tial-planetary arrangements with com-
pound planet gears. In the arrangement 
in Figure 1a, the sun gear is engaged with 
a portion of the planet gear that is in 

mesh with the stationary ring gear. In this 
case the gear ratio is:

(1)

u =
1 + z3a

z1

1 − z2b z3a
z2a z3b

where
 u = gear ratio
 z1 = sun gear number of teeth
 z2a = number of teeth the planet gear 

engaged with the sun gear and 
stationary ring gear

 z2b = number of teeth the planet gear 
engaged with the rotating ring gear

 z3a = stationary ring gear number of teeth
 z3b = rotating ring gear number of teeth

In the arrangement in Figure 1b, the 
sun gear is engaged with a portion of the 
planet gear that is in mesh with the rotat-
ing ring gear. In this case the gear ratio is:

(2)

u =
1 + z3a z2b

z1 z2a

1 − z3a z2b
z3b z2a
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Figure 1  Differential-planetary arrangements.
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If a gear ratio is negative, the input 
and output shaft rotation directions are 
opposite.

All gear meshes in differential-plane-
tary arrangements have the same center 
distance. This condition allows for defi-
nition of relations between the operating 
modules, mw, or diametral pitches, DPw. 
For the arrangement in Figure 1a they 
are:

(3)
mw12a (z1 + z2a) = mw2a3a (z3a − z2a) = mw2b3b (z3b − z2b)

or
(4)

z1 + z2a = z3a − z2a = z3b − z2b
DPw12a DPw2a3a DPw2b3b

The relationship between operating 
pressure angles in the gear meshes z1 – z2a 
and z2a – z3a is defined by Equation 5 as:

(5)
cos αw2a−3a = z1 + z2a
cos αw1−2a z3a − z2a

where
 αw1−2a operating pressure angle in a mesh 

of the sun gear and the planet 
gear engaged with the stationary 
ring gear

 αw2a−3a operating pressure angle in the 
planet/stationary ring gear mesh

Similar to the arrangement in Figure 1b:
(6)

mw12b (z1 + z2b) = mw2b3b (z3b − z2b) = mw2a3a (z3a − z2a)
or

(7)

z1 + z2b = z3b − z2b = z3a − z2a
DPw12b DPw2b3b DPw2a3a

The relationship between operating 
pressure angles in the gear meshes z1 – z2b 
and z2b – z3b is defined by equation:

(8)
cos αw2b−3b = z1 + z2b
cos αw1−2b z3a − z2b

where
 αw1−2b operating pressure angle in a mesh 

of the sun gear and the planet 
gear engaged with the rotating 
ring gear

 αw2b−3b operating pressure angle in the 
planet/rotating ring gear mesh

In differential-planetary arrangements 
with compound planet gears, operat-
ing pressure angles in the planet/station-
ary ring gear mesh and in the planet the 
planet/rotating ring gear mesh can be 
selected independently. This allows for 
balancing specific sliding velocities in 
these meshes to maximize gear efficien-
cy, which could be 80–90% — depend-
ing on the gear ratio (Ref. 2). The maxi-
mum gear ratio in such arrangements is 
limited by possible tip/tip interference of 

the neighboring planet gears. In order to 
avoid this interference the following con-
dition should be satisfied:

For the arrangement in Figure 1a:
(9)

z2a =
z1 sin ( π )− 2h2anw

1 − sin ( π )nw

For the arrangement in Figure 1b:
(10)

z2b =
z1 sin ( π )− 2h2bnw

1 − sin ( π )nw

where
 nw number of planets
 h2a, h2b operating addendum coefficients 

of the planet gears z2a and z2b, 
accordingly.

Maximum gear ratio values for the 
differential-planetary arrangement with 
the compound planet gears (assuming 
h2a = h2b = 1.0) are shown in Table 1.

The assembly condition for these gear 
arrangements is:

(11)
z3a − z3b = integernw

Two parts of a compound planet gear 
should be angularly aligned for proper 
assembly. This is typically achieved by 
aligning the axes of one tooth of each 
part of the compound planet gear, which 
makes its fabrication more complicated. 
Assembly of such gear drives requires 
certain angular positioning of plan-
et gears. All these factors increase the 
cost of this type of gear drive. Examples 
of differential-planetary gear actuators 
with compound planet gears are shown 
in Figure 2.

Figure 2  Differential-planetary gear actuators with compound planet gears.

Table 1  Maximum gear ratio values for 
differential-planetary arrangements 
with compound planet gears

Number of 
planets

Sun gear tooth 
number

Maximum gear 
ratio*

3
10 ±1579:1
15 ±2857:1
25 ±5183:1

4
10 ±144:1
15 ±273:1
25 ±518:1

5
10 ±49:1
15 ±80:1
25 ±162:1

* Sign “+” if the input and output shaft rotation directions are 
the same, sign“-” if they are opposite.
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A simplified version of the one-stage, 
differential-planetary arrangement is 
shown in Figure 1c; this arrangement does 
not use the compound planet gear. The 
common planet gear is engaged with the 

sun gear, and both the stationary and the 
rotating ring gears. This does not allow 
for specific sliding velocities in each mesh 
to be equalized, resulting in a reduction 
of gear efficiency of about 70–84% (Ref. 

2). However, the assembly of such gear 
drives does not require certain angular 
positioning of planet gears, and their man-
ufacturing cost is significantly lower for 
drives with the compound planet gears. 
An example of the differential-planetary 
gear actuator with common planet gears is 
shown in Figure 3.

Relations between operating pressure 
angles in the gear meshes are defined by 
Equations 12–15:

(12)
cos αw2-3a = z1 + z2
cos αw1-2 z3a − z2

(13)
cos αw2-3b = z1 + z2
cos αw1-2 z3b − z2

(14)
cos αw2-3b = z3a + z2
cos αw2-3a z3b − z2

where
 αw1-2 operating pressure angle in sun/

planet gear mesh
 αw2-3a operating pressure angle in planet/

stationary ring gear mesh
 αw2-3b operating pressure angle in planet/

rotating ring gear mesh

A gear ratio is
(15)

u =
1 + z3a

z1

1 − z3a
z3b

Maximum gear ratio values for the 
differential-planetary arrangement with 
the common planet gears (assuming 
h2a = h2b = 1.0) are shown in the Table 2.

In differential-planetary arrange-
ments (Fig. 1), tangent forces applied to 
the planet gear teeth from the stationary 
and rotating ring gears are unbalanced, 

Figure 3  Differential-planetary gear actuator.

Figure 4  Differential-planetary arrangements without planet gear cage.
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as they lie on different parallel planes 
and have opposite directions. A sturdy 
planet cage is required to avoid severe 
planet gear mesh misalignment. There 
are some gear drives that use the differ-
ential-planetary arrangements with bal-
anced planet gear tangent forces (Fig. 4). 
In this case, the triple-compound planet 
gears (Figs. 4a and 4b) are used. They have 
identical gear profiles on their end por-
tions that are engaged with the two iden-
tical stationary ring gears. The middle 
portion of such planet gears has a differ-
ent profile than those on the ends, and is 
engaged with the rotating ring gear. The 
arrangement in Figure 4c has common 
planet gears engaged with the sun gear, 
two stationary ring gears, and one rotat-
ing ring gear. These types of differential-
planetary drives typically do not have 
the cage and bearings, because the planet 
gear forces are balanced and planet gears 
themselves work like the roll bearings for 
radial support of the rotating ring gear.

Two-Stage Arrangements
In most conventional, two-stage, epicy-
clic arrangements, the gear ratio usually 
does not exceed 100:1 — although there 
are possible arrangements that allow a 
significant increase in the gear ratio (Ref. 
3). Figure 5 shows the planetary gear 
arrangement “A” with the sun gears of the 
first and second stages connected togeth-
er and the compound cage supporting the 
planet gears of both the first and second 
stages.

A sketch of the gearbox with arrange-
ment A is presented in Figure 6. Both sun 
gears are connected to the input shaft and 
are engaged with the planet gears of the 
first and second stages, respectively. The 
first-stage ring gear is stationary and is 

Figure 5  Two-stage planetary (arrangement A) with connected sun gears of first and second 
stages and compound cage.

Figure 6  Two-stage planetary gearbox (arrangement A) with connected sun gears of first and 
second stages and compound cage.

Table 2  Maximum gear ratio values for 
differential-planetary arrangements 
with compound planet gears

Number of 
planets

Sun gear tooth 
number

Maximum gear 
ratio

3

10 ±405:1

15 ±767:1

25 ±1432:1

4

10 ±59:1

15 ±101:1

25 ±198:1

5

10 ±20:1

15 ±32:1

25 ±70:1
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connected with the gearbox housing. It is 
engaged with the first-stage planet gears. 
The compound cage practically contains 
the first- and second-stage cages joined 
together. The ring gear of the second 
stage is engaged with the second-stage 
planet gears and connected to the output 
shaft. The gear ratio of arrangement A is:

(16)

u = z3
II (z1

I + z3
I)

z1
I z3

II − z1
II z3

I

where
 z1

I, z1
II = numbers of teeth of the sun gears 

of the 1st and 2nd stages
 z2

I, z2
II = numbers of teeth of the planet 

gears of the 1st and 2nd stages
 z3

I, z3
II = numbers of teeth of the ring gears 

of the 1st and 2nd stages

Figure 7 shows the alternative gear 
arrangement B with the sun gears of both 
stages joined together and the ring gears 
of both stages also connected.

A sketch of the gearbox with the alter-
native arrangement B is presented in 
Figure 8.

Both sun gears are connected to the 
input shaft and engaged with the plan-
et gears of the first and second stages, 
respectively. The shafts supporting the 
first-stage planet gears are connected 
(pressed in, for example) to the gearbox 
housing. Both ring gears are joined and 
engaged with the planet gears of the first 
and second stages; the second-stage car-
rier is joined with the output shaft. The 
gear ratio of arrangement B is:

(17)

u = z3
I (z1

II + z3
II)

z1
II z3

I − z1
I z3

II

The maximum gear ratios of these two-
stage planetary arrangements A and B 
are achieved when the denominator of 
Equations 16 and 17 is equal to 1 or –1. 
This condition can be presented as:

(18)

z1
I z3

II − z1
II z3

I = 1

When this denominator is 1, the input 
and output shafts are rotating in the same 
direction. When it is less −1, the input 
and output shafts are rotating in opposite 
directions. If a number of planet gears are 
more than 1 (nw

I >1 and nw
II >1), Equation 

18 requires irregular, angular positioning 
of the planet gears in one or both plan-
etary stages. This means that the central 
location angles γi between planet gears in 
one or both stages are not identical (see 
Figs. 6b, 6c, 8b and 8c). A definition of 

Figure 8  Two-stage planetary gearbox (arrangement B) with sun gears and ring gears of 1st 
and 2nd stages joined.

Figure 7  Two-stage planetary (arrangement B) with sun gears and ring gears of first and 
second stages joined.

66 GEAR TECHNOLOGY | June 2014
[www.geartechnology.com]

technical



the central angles with irregular angu-
lar positioning of the planet gears that 
provide proper assembly is described in 
Reference 3.

The neighboring planet gears located 
at the minimum central angles must be 
checked for the possibility of tip/tip inter-
ference. Irregular angular positioning of 
the planet gears may result in an imbal-
ance in the planetary stage. This must be 
avoided by carrier assembly balancing.

Application of the two-stage planetary 
arrangements A and B allows very high 
gear ratio values to be achieved. In prac-
tice, these values are limited only by the 
number of teeth of ring gears z3

I and z3
II. 

Table 3 presents maximum achievable 
gear ratios depending on the number of 
teeth of ring gears z3

I and z3
II.

Unlike conventional, two-stage epi-
cyclic arrangements, in the planetary 
arrangements A and B a total gear ratio 
does not depend on internal gear ratios 
in each stage; this allows increasing the 
number of planet gears. An example of 
the gear ratio for the planetary arrange-
ments A and B is shown in Table 4.

The efficiency of these two-stage plan-
etary gear arrangements is in opposite 
proportion to gear ratio, and is much 
lower than for conventional, two-stage, 
epicyclic gear arrangements. One poten-
tial area of application is in different posi-
tioning systems that need very low-out-
put RPM and typically do not require 
high-output torque.

Potential applications
Potential areas of application of high gear 
ratio, one-stage differential-planetary 
arrangements include different aerospace 
drives, such as flap actuators, robotic 
mechanisms, etc.

Extremely high gear ratio, two-stage 
planetary arrangements can be applied 
in different positioning systems that need 
very low-output RPM and typically do 
not require very high-output torque, such 
as the tracking system gear drives of solar 
batteries or the mirrors of solar power 
stations.

Summary
High gear ratio, one-stage differential-
planetary arrangements with compound 
and common planet gears are described. 
Gear ratio equations and maximum val-
ues are defined.

Extremely high gear ratio, two-stage 
planetary arrangements are described. 
Gear ratio equations and maximum 
achievable values are defined.

Potential applications of high gear 
ratio, one-stage and two-stage planetary 
drives are suggested. 
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Table 3  Maximum achievable gear ratios depending on numbers of teeth

Ring gear number of teeth, z3
I and z3

II Maximum gear ratio

100 ±14,000:1
200 ±66,000:1
300 ±160,000:1
400 ±280,000:1

Table 4  Gear ratio example for planetary arrangements A and B
Arrangement A (Figure 5) B (Figure 7)

1st stage

Sun gear number of teeth 21 21
Planet gear number of teeth 21 21
Ring gear number of teeth 62 62

Number of planet gears 5 5

2nd stage

Sun gear number of teeth 22 22
Planet gear number of teeth 22 22
Ring gear number of teeth 65 65

Number of planet gears 5 5
Gear ratio 5395:1 -5394:1
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